
On Fault Tolerance in Law-Governed Multi-Agent Systems
Maíra A. de C. Gatti, Carlos J. P. de Lucena

Laboratório de Engenharia de Software – LES
Pontifícia Universidade Católica do Rio de Janeiro, PUC-Rio
Rua Marquês de São Vicente, 225, Rio de Janeiro – Brasil

+55 -21- 2540-6915, ext. 103

{mgatti, lucena} @inf.puc-rio.br

Jean-Pierre Briot
Laboratoire d'informatique de Paris 6 - LIP6

Universit´e Pierre et Marie Curie
8 rue du Capitaine Scott, 75015 Paris, France

Jean-Pierre.Briot@lip6.fr
ABSTRACT
There has been much research about frameworks and tools to
build multi-agent systems in different domains in recent years.
These systems have particular features such as autonomy,
distribution, sociability, cooperation and others implemented in
another software entity, known as an agent. In order to achieve
some previously defined goals, the agents interact between
themselves to complete their tasks. One issue that arises from this
kind of software is how can we ensure their dependability,
considering the reliability of critical applications and the
availability of those agents that play important roles with their
responsibilities; i.e., how to dynamically and automatically
identify the most critical agents and increase their availability and
reliability? To this end, over the past few years there has been
work on this problem proposing different approaches, each one
solving a restricted problem involving dependability and leaving
the global problem to be solved afterwards. This paper describes a
solution to increase the availability of such systems through a
technique of fault tolerance known as agent replication, and to
increase its reliability through a mechanism of agent interaction
regulation called law enforcement mechanism. The main
contribution of this work is to improve the capability of
calculating how critical an agent is to the system through its
interactions with other agents and to provide a framework that
uses this information to ensure availability and reliability.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems,
Languagens and structures; C.4. [Performance of Systems]:
Reliability, availability, and serviceability;

General Terms
Reliability

Keywords
Open systems, dependability, criticality, law-enforcement.

1. INTRODUCTION
There are many definitions in the literature for agents and,
consequently, multi-agent systems. And despite their differences,
all of them basically characterize a multi-agent system (MAS) as
a computational environment in which individual software agents
interact with each other, in a cooperative manner, or in a
competitive manner, and sometimes autonomously pursuing their
individual goals. During this process, they access the
environment’s resources and services and occasionally produce
results for the entities that initiated these software agents [1]. As
the agents interact in a concurrent, asynchronous and
decentralized manner, this kind of system can be categorized as a
complex system [2].

The absence of centralized coordination data makes it hard to
determine the current state of the system and/or to predict the
effects of actions. Moreover, all of the possible situations that
may arise in the execution context led us to be uncertain about
predicting the behavior of agents. However, in critical
applications such as business environments or government
agencies (hospitals, police, justice, etc.), the behavior of the
global system must be taken into account and structural
characteristics of the domain have to be incorporated [10].

A particular issue that arises from this kind of software is: how we
can ensure their dependability (which is the ability of a computer
system to deliver service that can justifiably be trusted [3])
considering the reliability of critical applications and availability
of these agents, which play important roles with their
responsibilities? To this end, there already has been some work
addressing this problem ([3][4][5][6], for instance, for availability
and [7][8] for reliability) which have been proposed in the last
few years using different approaches; each one solved a restricted
problem involving dependability while leaving the global problem
to be resolved afterwards.

This paper describes a solution to increase the availability of such
systems through a technique of fault tolerance known as agent
replication, and to increase their reliability through a mechanism
of agent interaction regulation called law enforcement
mechanism. The main contribution of this work is to improve the
capability of calculating how critical an agent is to the system
through its interactions with other agents and to provide a
framework that uses this information to ensure availability and
reliability.

The subsequent sections are organized as follows: Section 2
introduces the main concepts related to dependability. We focus
on the strategies of fault tolerance for multi-agent systems, and on
the law enforcement approach for increasing the reliability of
these systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SELMAS’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

Section 3 states a scenario for the problem description. And
Section 4 details the proposed solution for the problem as an
integrated architecture. This architecture is the integration of both
approaches presented in Section 2. And finally, Section 5
concludes this paper.

2. DEPENDABILITY IN MULTI-AGENT
SYSTEMS
The concepts and techniques of dependability are well established
due to major concerns regarding ubiquitous computing systems
that control critical structures such as railroads, airplanes, and
nuclear plants [11].

The main notion of dependability is consolidated within three
concepts: the attributes of, the threats to and the means by which
it is attained [12][13].

The attributes of system dependability consist of: (i) availability,
the deliverance of correct service at a given time; (ii) reliability,
the continuous deliverance of correct service for a period of time;
(iii) safety, the absence of catastrophic consequences to users and
the environment; (iv) confidentiality, the absence of unauthorized
disclosure of information; (v) integrity, the absence of improper
system state alterations; (vi) maintainability, the ability to
undergo repairs and modifications.

Different emphasis may be put on each attribute depending on the
application intended for the system. Several other dependability
attributes may be defined and may be either combinations or
specializations of the above. In this paper we will address
availability and reliability attributes as a way of achieving or
increasing multi-agent systems dependability.

The threats are the second concept mentioned previously and
consist of failures, errors and faults. The ways in which a system
can fail are its failure modes, characterized by the severity and the
symptoms of a failure. And a fault is active when it produces an
error; otherwise, it is dormant.

Finally, the means to attain a system’s dependability, according to
[12][13], were regrouped in four techniques: fault prevention,
fault removal, fault tolerance and fault forecasting. The focus of
the work presented here is fault tolerance, i.e., how to deliver
correct service in the presence of active faults. It is generally
implemented by error detection and subsequent system recovery,
and possibly by error containment. Recovery transforms a system
state that contains one or more errors (and possibly faults) into a
state that can be activated again without detected errors and
faults.

2.1 Fault tolerance
There are four essential characteristics of a multi-agent system: a
MAS is composed of autonomous software agents, a MAS has no
single point of control, a MAS interacts with a dynamic
environment, and the agents within a MAS are social (agents
communicate and interact with each other and may form
relationships).

All these situations contribute to a failure state. A failure occurs
when the system produces results that do not meet the specified
requirements. A fault is defined to be a defect within a component
of a MAS that may lead to a failure. There are several faults that
may occur. For instance, we can have program bugs, which are

errors in programming that are not detected by system testing. We
can also have unforeseen states, i.e., the programming does not
handle a particular state and testing team did not test for this state.
We can have processor faults, which can be a system crash
(permanent/fail-silent) or a shortage of system resources. There
would be communication faults which can occur due to slow
downs, failures or other problems with the communication links;
And, finally, unwanted emerging behavior, i.e., system behavior
which is not predicted. Emerging behavior may be profitable or
detrimental. When a fault occurs in a MAS, interactions between
agents may cause the fault to spread throughout the system in
unpredictable ways. The mechanism proposed in this paper aims
to solve the processor and communication faults through the agent
replication technique, and the unwanted emerging behavior
through the law enforcement mechanism.

Several approaches (for instance [4][14][15]) address the multi-
faced problem of fault tolerance in multi-agent systems. Some of
them handle the problems of communication, interaction and
coordination of agents with the other agents of the system. Others
address the difficulties of making reliable mobile agents, which
are more exposed to security problems. Some of them are based
on replication mechanisms [9], and as mentioned before they have
solved many problems of ubiquitous systems. However, the main
limit of current replication techniques for multi-agent systems is
that most of them are not quite suitable for implementing adaptive
replication mechanisms, which is a problem as the criticality of
agents may evolve dynamically during the course of computation
and it not possible to predict how critical the agent is previously.

Therefore, there is a framework called DimaX [6] that allows
dynamic replication and dynamic adaptation of the replication
policy (e.g., passive to active, changing the number of replicas). It
was designed to easily integrate various agent architectures, and
the mechanisms that ensure dependability are kept as transparent
as possible to the application. Basically, DimaX is the integration
between a multi-agent system called Dima and the dynamic
replication architecture for agents called DarX.

Among the several approaches to fault tolerance in MASs,
basically we can group them in: agent-centric approaches, which
build fault tolerance into the agents; and system-centric
approaches, which move the monitoring and fault recovering into
a separate software entity [5]. Agent replication uses aspects of
both agent-centric and system-centric approaches.

Agent replication is the act of creating one or more replicas of one
or more agents, and the number of each agent replica is the
replication degree; everything depends on how critical the agent
is while executing its tasks. Then there are two cases that might
be distinguished: 1) the agent’s criticality is static and 2) the
agent’s criticality is dynamic. In the first case, multi-agent
systems have often static organization structures, static behaviors
of agents, and a small number of agents. Critical agents, therefore,
can be identified by the designer and can be replicated by the
programmer before run time.

In the second case, the agent criticality cannot be determined
before run time due to the fact that the multi-agent systems may
have dynamic organization structures, dynamic behaviors of
agents and a large number of agents. Then it is important to
determine these structures dynamically in order to evaluate agent
criticality. [16] proposed a way of determining it through role

analysis. It could be done by some prior input from the designer
of the application who specifies the roles’ weights, or there would
be an observation module for each server that collects the data
through the agent execution and their interactions. In the second
approach, global information is built and then used to obtain roles
and degree of activity to compute the agent criticality.

Another way of dynamically determining these structures to
evaluate agent criticality is to represent the emergent
organizational structure of a multi-agent system by a graph [6].
The hypothesis is that the criticality of an agent relies on the
interdependences of other agents on this agent. First, the
interdependence graph is initialized by the designer, and then it is
dynamically adapted by the system itself. Some algorithms to
dynamically adapt and describe it are proposed in [6].

We will present here an enhancement of these approaches and it
will be further described in Section 3. Basically, we improved the
agent criticality calculation through dynamic elements present
during interactions with other agents. These elements will be
described in the next section while the law enforcement
approaches, especially the one that was chosen, are detailed.

2.2 Law-Governed Interaction
Open multi-agent systems, as we have already seen, are built of
distributed software agents that are independently implemented,
i.e., the development takes place without a centralized control.
Thus, we want to ensure the reliability of these systems in a way
that all the interactions between agents will occur according to the
specification and that these agents will obey the specified
scenario. For this, these applications must be built upon a law-
governed architecture.

In this kind of architecture, enforcement that is responsible for the
interception of messages and the interpreting of previously
described laws is implemented. The core of a law-governed
approach is the mechanism used by the mediator to monitor the
conversations between agents. Among the models and
frameworks that were developed to support this mechanism (for
instance, [7][8][17][18]), XMLaw [7] was chosen for three main
reasons. First, because it implements a law enforcement approach
as an object-oriented framework, which brings the benefits of
reuse and flexibility. Second, it allows normative behavior that is
more expressive than the others through the connection between
norms and clocks. And finally, it permits the execution of Java
code through the concept of actions.

Thus, in this section, we explain the description language and the
XMLaw framework [7]. Basically, interactions should be
analyzed and subsequently described using the concepts proposed
in the model during the design phase. After that, the concepts will
be mapped to a declarative language based on XML. It is also
important to point out that agent developers from different open
MASs must agree upon interaction procedure. In fact, each open
MAS should have a clear documentation about the interactions’
rules. By doing that, there is no need of agent developers’
interaction.

Interaction’s definitions are interpreted by a software framework
that monitors component interaction and enforces the behavior
specified by the language. Once interaction is specified and
enforced, despite the autonomy of the agents, the system’s global
behavior is better controlled and predicted. Interaction

specification of a system is also called the laws of a system. This
is because besides the idea of specification itself, interactions are
monitored and enforced. Then, they act as laws in the sense that
they describe what can be done (permissions), what cannot be
done (prohibitions) and what must be done (obligations).

Among the model elements, the outer concept is the
LawOrganization. This element represents the interaction laws (or
normative dimension) of a multi-agent organization. A
LawOrganization is composed of scenes, clocks, norms and
actions. Scenes are interaction contexts that can happen in an
organization. They allow modularizing interaction breaking the
interaction of the whole system into smaller parts. Clocks
introduce global times, which are shared by all scenes.

Norms capture notions of permissions, obligations and
prohibitions regarding agents’ interaction behavior (as mentioned
before). Actions can be viewed as a consequence of any
interaction condition; for example, if an agent acquires an
obligation, then action “A” should be executed.

Scenes define an interaction protocol (from a global point of
view), a set of norms and clocks that are only valid in the context
of the scene. Furthermore, scenes also identify which agents are
allowed to start or participate in the scene.

Events are the basis of the communication among law elements;
that is, law elements dynamically relate with other elements
through event notifications. Basically, we can understand the
dynamic of the elements as a chain of causes and consequences,
where an event can activate a law element; this law element could
generate other events and so on.

The framework provides compliance with both the model of
interactions proposed previously and the XMLaw declarative
language. It has a set of modules that supports three types of
users: (i) “Law developer” represents the developer responsible
for specifying the laws. He must understand the application under
construction, know the law concepts, and then, specify the laws
for the application; (ii) “Agent developer” represents the
developer responsible for building the agents of a multi-agent
system. He knows about the existence of the laws and should
design the agents in compliance with them; (iii) “Software
infrastructure developer” deals with law enforcement software
support.

Most of the framework is implemented as mediator agent
modules. The mediator agent monitors all interactions and makes
sure that interactions are compliant with the specifications. The
mediator performs a number of activities. First, the mediator waits
to receive messages. Once a message has arrived, it checks if the
message belongs to the mediator protocol. If it does, the mediator
proceeds with the protocol execution. Otherwise, if the message
belongs to some agent conversation, the mediator starts the
process of enforcing, and if it is compliant with the laws, the
message is redirected to the addressee agent. This sequence of
activities is repeated while the mediator agent is running.

The communication among the modules is mainly based on event
notifications. This approach leads to a low coupling level among
modules and also leads to more flexible system designs.

The proposal here is not to detail the framework, so further details
can be found in [19]. The next sections will address both DimaX
and XMLaw and how their integration works.

3. PROBLEM DESCRIPTION
In this section we are going to describe a scenario where two
agents exchange messages in order to achieve their goals. During
the interaction, they are regulated by rules that do not allow them
to send some types of messages (that we can call performatives)
and some other normative elements. The idea of illustrating this
scenario is to find out how to answer two main questions: how
and which elements (norms, clocks, etc.) of the XMLaw could
improve the agent criticality analysis that is done by DimaX? And
how can it be best accomplished, considering coupling,
modularity and reuse?

First, imagine a scenario where there are two agents mentioned:
the customer and the seller of an institution. Suppose that an open
multi-agent system exists where the agents that want to buy a
product may enter or leave at any time, and that there are sellers
in this institution that want to sell the product for the highest price
that they can achieve. Then, we have a negotiation scene where
each agent wants to succeed and there is a protocol in this scene
that represents all the messages that can be exchanged and all the
rules that rule this scene and the participants.

At any time, any agent can enter into the scene and initiate the
protocol. If we specify this scene in XMLaw, we have to specify
the protocol as a state machine, where each transition of the
protocol is activated by a message sent by an agent and it can
activate the other elements of XMLaw, as clocks and norms.

Basically, the negotiation proceeds as follows: a customer
initiates a negotiation by sending a proposal for a book to a seller.
He informs the maximum price that he will pay for the book. The
seller can accept with a proposal or can refuse it. If he accepts, he
can send proposals with lesser or equal price informed by the
customer. When the customer receives the proposal, he has 2
minutes to decide if he will accept it or not. After 2 minutes, if the
customer hasn’t answered the seller, he can sell the product to
another customer. Otherwise the seller is not allowed to sell it to
anybody else. If the customer refuses it, the seller can re-propose
another price. If the customer accepts it, the seller informs the
bank where the payment must be made. Then the customer has
the obligation of paying for the product and of informing the
number of the voucher to the seller. The scene ends then when the
customer informs that he paid it with the proof of payment
(Figure 1).

Figure 1 - Protocol State Machine Representation

If we consider that when an event (such as clock
activation/deactivation, norm activation/deactivation, etc.) occurs
during the scene execution, the agent criticality can increase or
decrease, since the agent becomes more or less important; thus,
each element should be analyzed in order to calculate it in the best
way. Moreover, other elements and events that might not be
handled by XMLaw should be analyzed in order to evaluate how
they could influence the agent criticality analysis. For instance,
when an agent starts playing a role its criticality may increase or
decrease.

In the context of the negotiation scene, when the customer must
answer the seller if he will accept his proposal or refuse it since
the clock activation event will be fired, his criticality should
increase, since the seller cannot sell the product while the
customer doesn’t answer him. Thus, the customer is very
important to the seller at this time and should not crash, for
example. Then, when the clock deactivation is fired, the customer
criticality should decrease. Another situation would be of the
payment for the product. Since the customer has the obligation of
paying for the product when he accepts the price, his criticality
should also increase. Those variations are shown in Figure 2.

We can see the protocol execution on the left side of the picture.
Next to it is a draft of the main criticality variation. This main
result is based on the criticality variation that occurs as a result of
each event, as previously mentioned. The clock’s picture
represents the clock activation/deactivation event and the letter N
represents the norm activation/deactivation event during the
protocol execution, according to the plus or minus sign that comes
before the picture or letter.

For instance, in an analogous manner, if we analyze the seller
criticality during the scene execution, his criticality should
increase when the customer proposes a price for the product
because he has the obligation to answer him.

Figure 2 - Criticality variation for customer role

Within conclusion, all events that may be fired during a protocol
execution can increase or decrease the agent criticality according
to the type of the event and to its semantic. In the next section we
will explain how we extended both XMLaw and DimaX to
include this analysis at the design time and at the run-time.

4. PROPOSED SOLUTION: THE
INTEGRATION
In this section we will describe the proposed solution first from
the XMLaw point of view, second from the DimaX point of view,
and finally from the integration point of view.

We analyzed XMLaw and studied which elements should be
inserted, which events should be sensed by the new elements and
so on. It was not a trivial effort considering that XMLaw is not an
extensible framework for adding new elements or generating new
events. Section 4.1 describes these elements and events.

Then we analyzed how to integrate it with DimaX and how to
extend the criticality analysis done by DimaX. Section 4.2
describes how we extended the agent criticality calculation and
Section 4.3 describes the integration itself.

4.1 XMLaw Extensions
We have extended XMLaw with two new elements: Role and
Criticality Analysis. With the new Role element, when an agent
requests to enter an organization, it has to inform the role it wants
to play; and when a scene is executed, the agent, if accepted, will
have to play its role. An organization has one or more roles to be
played by agents and an agent can play different roles in different
organizations.

Each organization’s role has an identification and a list of norms
associated with its Rights. Some norms can be activated and/or
deactivated according to agents’ rights. Rights describe the
permissions regarding the resources and services available in the
environment and about the behavior of the agents. It can activate
or deactivate some norms related to that role.

The Criticality Analysis element has two elements: Increases and
Decreases. The Increases element contains the list of events that
contribute to increasing agent criticality. And the Decreases
element contains the list of events that contribute to decreasing
agent criticality. The Increase and Decrease elements have these
attributes: the event identification from the event that was fired,
the event type from the event that was fired, the value which is a
weight for the increase or decrease contribution of that event and
the agent role identification, which has all the references to the
agent whose criticality will be updated in runtime. The weight is a
number between 0 to 1.

Figure 3 - Example of Criticality Analysis Specification

For instance, Figure 3 shows the XMLaw specification for the
Criticality Analysis. When an agent starts playing the customer
role, its criticality has to be recalculated and updated by a weight
of 0.3. The same happens when an agent starts playing the seller
role, its criticality has to be updated by a weight of 0.7. Those
actions are executed when the role activation event is fired.

4.2 DimaX Extensions
In our work we have proposed the same reasoning as done in [12]
for updating the agents’ criticality. Each value of increasing or
decreasing agent’s criticality is stored on a table T, which defines
the weights of its event. So, for example, there would be three
different tables in our negotiation scene problem: Tr, which
defines the weights of role activation or deactivation; Tc, which
defines the weights of clocks activation or deactivation; and Tn,
which defines the weights of norms activation or deactivation.

Then the criticality of the agent Agent i is computed as follows:

Where a1, a2, a3 and a4 are the weights given to the four kinds of
parameters (roles, clocks, norms and degree of activity), which
are introduced by the designer by XMLaw specification. And awi
is the degree of activity of the agent i.

And the number of replicas nbi of Agent i, which is used to
update the number of replicas of the domain agent, can be
determined as follows:

Where:

– wi: its criticality,

– W: the sum of the domain agents’ criticality,

– rm: the minimum number of replicas which is introduced
by the designer,

– Rm: the available resources that define the maximum
number of possible simultaneous replicas.

4.3 DimaX and XMLaw Integration
In order to complete the full integration, there are two tasks that
we are looking forward to accomplish. First, we will evaluate the
new architecture with a larger case study. We are working on this
task at the moment.

After that, we will conduct a comparison between this case study
running on this new architecture with the same case study running
separately in DimaX and XMLaw.

wi(t) = (a1 * aggregation (Tr [rij] j=1,nr) +

 a2 * aggregation (Tc [cij] j=1,nc) +

 a3 * aggregation (Tn [nij] j=1,nn) +

 a4 * awi)) / ∑
=

4

1i
ia

nbi(t) = rounded(rm + wi(t) ∗ Rm/W)

The idea is to benchmark the two attributes of dependability that
we are tackling: availability and reliability. Thus, we will have a
deep analysis of how much the solution proposed improves
dependability of multi-agent systems.

5. CONCLUSIONS AND FUTURE WORK
As we have already seen, the Open Multi-Agents System
dependability can be achieved by fault tolerance. Among other
existing fault tolerance techniques, there is a specific one that has
been used in the recent years for achieving dependability in multi-
agent systems. It is the Agent Replication technique. It has been
used in several approaches and we used it in our work from the
point of view of [6][16], since it is an effective way to implement
fault tolerance for distributed systems.

Furthermore, we used XMLaw because we expect that it also
increases the reliability of Open Multi-Agents System through a
law enforcement approach for regulating agents’ interactions
through a higher control.

This work presents an extension of the XMLaw conceptual model
described in Section 3 as a way of improving its dependability.
We propose to use new elements that help specify the attributes
concerning the agent criticality during its interaction with other
agents.

Moreover, considering that XMLaw framework is an event-based
framework, other elements from the law’s specification that are
perceived by events can improve the criticality analysis done by
DimaX, which is used for calculating the agent number of replicas
as clock activations, norms activations, etc.

We extended XMLaw with two new elements that were
introduced in the conceptual model: Role and Criticality Analysis.
The first one (Role) was necessary because, until now, XMLaw
does not have this element and it would be very difficult to
associate an event activation to the agent without its reference. By
doing that, we realized the need of associating specific norms to
an agent when it starts playing a role or stops playing it. Then we
created the concept of Rights, which describe the permissions on
the resources and services available in the environment and about
the behavior of the agents. It can activate or deactivate some
norms related to that role.

The second element, Criticality Analysis, was introduced in order
to monitor the events that should improve the criticality analysis
done by DimaX. The events are divided into two groups: the ones
that increase the agent’s criticality and the ones that decrease it.
By doing that, any event considered important by the designer of
the application while specifying its law can be taken into account.

Second, it was necessary to extend DimaX in order to provide
another algorithm for calculating the agent’s criticality.
Considering the reasoning done by the Role Analysis described in
[16], it was easy to extend it; instead of receiving one table with
the weights, receiving tables related to XMLaw events with the
weights.

Two issues arose during the XMLaw instantiation. First, we
perceived that XMLaw could be improved in order to make it
more extensible. And second, the specification done by the
designer of the events, which increase or decrease agent

criticality, could be more appropriate if it wasn't so sensitive. In
fact, we believe that it should be based on safety cases.

Thus, we are going to study how dependability cases [20] can
help the “Law developer” of critical systems, since it defines a
bottom-up approach for specifying critical events.

6. REFERENCES
[1] http://agtivity.com/agdef.htm, accessed in Oct/2005.
[2] Jennings, Nicholas R., An Agent-Based Approach for

building Complex Software Systems, Communications of the
ACM, 44(4), 35-41, April 2001.

[3] Peng Xu, Ralph Deters. "Using Event-Streams for Fault-
Management in MAS," iat, pp. 433-436, IEEE/WIC/ACM
International Conference on Intelligent Agent Technology
(IAT'04), 2004.

[4] A. Fedoruk and R. Deters. Improving fault-tolerance by
replicating agents. In AAMAS2002, Boulogna, Italy, 2002.

[5] Fedoruk, A. and Deters, R. 2003. Using dynamic proxy
agent replicate groups to improve fault-tolerance in multi-
agent systems. In Proc. of the Sec. int. Joint Conf. AAMAS
'03. ACM Press, New York, NY, 990-991.

[6] Guessoum, Z., Faci, N., Briot, J.-P., Adaptive Replication of
Large-Scale Multi-Agent Systems - Towards a Fault-
Tolerant Multi-Agent Platform. Proc. of ICSE'05, 4th Int.
Workshop on Soft. Eng. for Large-Scale Multi-Agent
Systems, ACM Software Engineering Notes, 30(4) : 1-6,
July 2005.

[7] R. Paes, G. R. Carvalho, C.J.P. Lucena, P. S. C. Alencar,
H.O. Almeida; and V. T. Silva. Specifying Laws in Open
Multi-Agent Systems. In: Agents, Norms and Institutions for
Regulated Multi-agent Systems (ANIREM), AAMAS2005,
2005.

[8] Murata, T. and Minsky, N. "On Monitoring and Steering in
Large-Scale Multi-Agent Systems", Proceedings of ICSE
2003, 2nd Intn'l Workshop on Software Engineering for
Large-Scale Multi-Agent Systems (SELMAS 2003).

[9] Guerraoui, R. and Schiper, A. Software-based replication for
fault tolerance. IEEE Computer Journal, 30(4):68--74, 1997.

[10] Vpazquez-Salceda, J., Dignun, V., Dignun, F., Organizing
Multiagent Systems, Autonomous Agents and Multi-Agent
Systems, 11, 307-360, 2005.

[11] Lussier, B. et al. 3rd IARP-IEEE/RAS-EURON Joint
Workshop on Technical Challenges for Dependable Robots
in Human Environments, Manchester (GB), 7-9 September
2004, 7p.

[12] Laprie, J. C., Arlat, J., Blanquart,J. P., Costes, A., Crouzert,
Y., Deswarte, Y., Fabre, J. C., Guillermain, H., Kaâniche,
M., Kanoun, K. Mazet, C., Powel, D., Rabéjac, C. and
Thévenod, P. Dependability Handbook (2nd edition)
Cépaduès – Éditions, 1996. (ISBN 2-85428-341-4) (in
French).

[13] Avizienis, A., Laprie, J.-C., Randell, B. Dependability and
its t-hreats - A taxonomy. IFIP Congress Topical Sessions
2004: 91-120.

[14] Decker, K., Sycara,K. and Williamson, M. Cloning for
intelligent adaptive infor-mation agents. In ATAL’97, LNAI,
pages 63–75. Springer Verlag, 1997.

[15] Hagg, S. A sentinel approach to fault handling in multi-agent
systems. In C. Zhang and D. Lukose, editors, Multi-Agent
Systems, Methodologies and Applications, number 1286 in
LNCS, pages 190–195. Springer Verlag, 1997.

[16] Guessoum, Z., Briot, J.-P., Faci,N. Towards Fault-Tolerant
Massively Multiagent Systems, Massively Multiagent
Systems n.3446, LNAI, Springer Lecture Note Series,
Verlag, 2005, pg. 55-69.

[17] Minsky, N.H., Ungureanu, V., Law-governed interaction: a
coordination and control mechanism for heterogeneous

distributed systems, ACM Trans. Softw.Eng.Methodol. 9 (3)
(2000) 273-305.

[18] Esteva, M., Eletronic institutions:from specification to
developement, Ph.D. thesis, Institut d'Investigació en
Intel.ligència Artificial, Catalonia - Spain (October 2003).

[19] Paes, R., Alencar, P., Lucena, C. Governing Agent
Interaction in Open Multi-Agent Systems. Monografias de
Ciência da Computação nº 30/05, Departamento de
Informática, PUC-Rio, Brazil, 2005.

[20] Weinstock, C.B., Goodenough, J.B., Hudak, J.J.,
Dependability Cases, Technical Note, CMU/SEI-2004-TN-
016, 2004.

